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Abstract

Wave propagation in flowing ideal gases confined by cylindrical waveguides is described in the low-
frequency range using an iterative Frobenius series expansion method. The primary concern is to present a
mathematical model enabling any radial-dependent flow profile to be analyzed. In contrast to previous
analytical results, the present model is applicable in the general case where cubic and higher order terms in
the axial acoustic velocity become important and to examine the influence of a non-vanishing radial
velocity term. As a numerical test case, it is found that a gas flow velocity wðrÞ—for simplifying reasons
assumed to be a linear combination of a flat flow profile and a parabolic flow profile corresponding to a
mean flow equal to %w—is well approximated by a flat flow profile of the same mean flow value %w at low
shear wavenumbers and at higher shear wavenumbers (calculations were done for shear wavenumbers up to
8). In actual fact, the error introduced by making this mean flow approximation is smaller than the error
introduced by neglecting the radial velocity term.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The classical problem of sound propagation in gases contained in a cylindrical pipe has been
extensively studied for the case of a quiet medium [1–5]. During the past two decades, many
important results have been obtained for the propagation of acoustic waves in flowing gases
including effects due to temperature gradients, heat conduction/convection, and viscosity [6–14].
Particular interest has been paid to wave propagation in catalytic converters being a standard

component in present-day automobile exhaust systems [9–11]. Peat considered analytically the
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influence of a parabolic flow profile corresponding to laminar flow in capillary tubes of cylindrical
cross-section by use of a variational principle [9]. In the case of wave propagation in non-
isentropic flowing gases, it was assumed in Ref. [9] that radial velocity terms could be neglected
and that the axial acoustic velocity was well represented by a quadratic expansion in the radial co-
ordinate. A comparison between the model in Ref. [9] and exact results at zero flow [4] reveals that
the approximation made in Ref. [9] leads to deviations at high shear wavenumbers (especially in
terms of attenuation). Recent results by Peat and Kirby [13], however, include effects due to radial
velocity terms as well as background temperature gradients but this work describes parabolic flow
velocities only and is ‘‘purely’’ numerical. Dokumaci [11] presented a quasi-analytical solution to
the problem of acoustic wave propagation in a flowing gas where the flow velocity is constant, i.e.,
independent of the radial co-ordinate.
In the present work, an iterative model based on the Frobenius power series expansion method

is employed to examine wave propagation in a flowing gas including effects due to heat
conduction/convection as well as viscosity. The steady state gas flow velocity can be any function
of the radial co-ordinate. Results are finally given for the case where the steady state flow velocity
is a linear combination of a constant flow profile (fully developed turbulent flow) and a parabolic
flow profile (laminar flow).

2. Theory

Acoustic wave propagation in a flowing gas confined by cylindrical walls is governed by the
continuity equation, the Navier–Stokes equations, the energy equation, and the equation of state.
In the following, it will be assumed that the gas flow velocity wðrÞ can be represented as an infinite
power series in the radial co-ordinate r:

wðrÞ ¼
XN
l¼0

wlr
l; ð1Þ

where wl is the lth expansion coefficient of wðrÞ with respect to r: In the case where acoustic
wavelengths are much larger than the cylinder radius, it is reasonable to apply the conventional
boundary layer approximations that the axial velocity un is much larger than the radial velocity vn

and that changes in the radial direction are much larger than those in the axial direction (z
direction) [9,10]

un
bvn;

@

@r
b

@

@z
: ð2Þ

Under axisymmetric excitation conditions, azimuthal dependencies vanish identically by
symmetry

@

@y
¼ 0 ð3Þ

and the basic dynamic equations governing acoustics in flowing (ideal) gases simplify to

pn ¼ rnR0T
n; ð4Þ
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Here, rn; pn; and Tn are the fluid density, pressure, and temperature, respectively, R0 is the gas
constant, m is the first viscosity (the second viscosity coefficient is neglected in the present work for
simplifying reasons), K is the thermal conductivity, and cp is the heat capacity at constant
pressure. Next, under monofrequency excitation conditions (expðiotÞ time dependence),
dependent variables are separated into steady state terms and acoustic terms as follows:

rn ¼ %r½1þ arðZÞexpðGzþ iotÞ�; ð9Þ

un ¼ %a½M0ðZÞ þ auðZÞexpðGzþ iotÞ�; ð10Þ

vn ¼ %aavðZÞexpðGzþ iotÞ; ð11Þ

pn ¼
%r %a2

g
½P0ðzÞ þ apðZÞexpðGzþ iotÞ�; ð12Þ

Tn ¼
%a2

gR0
½1þ aTðZÞexpðGzþ iotÞ�; ð13Þ

where a is a perturbative dimensionless parameter. In addition, the following dimensionless co-
ordinates have been introduced in Eqs. (9)–(13):

z ¼
oz

%a
; ð14Þ

Z ¼
r

R
ð15Þ

and

M0ðZÞ ¼
wðZÞ
%a

¼
1

%a

XN
l¼0

wlðZRÞl: ð16Þ

In Eqs. (9)–(13), a51 as acoustic fluctuations are considered small, R is the cylinder radius, %r and
%a denote the steady state mass density and sound speed, respectively, P0ðzÞ is the steady state
pressure being a function of the axial co-ordinate only (refer to Eq. (7)), and g ¼ cp=cv is the ratio
of specific heats. It is convenient to introduce explicit notations for the real and imaginary parts of
the complex propagation constant G in the following:

G ¼ G0 þ iG00; ð17Þ
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where G0 represents attenuation of acoustic waves per unit distance and G00 is the phase shift over
the same distance.
Linearized acoustic equations follow from equating terms to first order in a obtained by

inserting Eqs. (9)–(13) into the governing equations (4)–(8), and read

k½irþ Gu þ M0ðZÞr� þ
dv

dZ
þ

v

Z
¼ 0; ð18Þ

iu þ M0ðZÞGuðZÞ þ
dM0ðZÞ
dZ

vðZÞ
k

¼ �
G
g

p þ
1

s2
d2u

dZ2
þ
1

Z
du

dZ

� �
; ð19Þ

iT þ M0ðZÞGT ¼
1

s2s2
d2T

dZ2
þ
1

Z
dT

dZ

� �
þ

g� 1
g

½iþ M0ðZÞG�p

þ
g� 1

s2
uðZÞ
Z

d

dZ
Z
dM0ðZÞ
dZ

� �
þ 2

dM0ðZÞ
dZ

duðZÞ
dZ

� �
; ð20Þ

p ¼ rþ T ¼ constant; ð21Þ

where s is the so-called shear wavenumber given by

s ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffi
%ro=m

p
ð22Þ

and

s ¼
ffiffiffiffiffiffi
Pr

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mcp=K

q
ð23Þ

is the square-root of the Prandtl number Pr: Here, it should be mentioned that (following
Ref. [9]), Eqs. (5) and (7) are satisfied identically to zeroth order in a; while Eq. (6) requires
flow to fulfill: M0ðZÞ ¼ 2 %Mð1� Z2Þ; i.e., flow is parabolic with mean flow %M: However, the
state and energy equations (Eqs. (4) and (8)) are not satisfied by this steady parabolic flow
solution, but this slight imbalance is neglected here. Furthermore, it will be assumed that the
cylinder walls are rigid and characterized by a high thermal conductivity such that the boundary
conditions

u ¼ v ¼ T ¼ 0; ð24Þ

apply when Z ¼ 1: Eqs. (18)–(21) combined with the boundary condition Eq. (24) can be solved by
use of the Frobenius series expansion method [15,16]. This procedure is described in the next
section.

3. The Frobenius method applied to gas flow acoustics

In this section, an iterative procedure for solving Eqs. (18)–(21) and Eq. (24) is described using
the Frobenius series expansion method. Let us start out by rewriting Eq. (19) as [15,16]

d2uiþ1

dZ2
þ
1

Z
duiþ1

dZ
� is2uiþ1 ¼ f iðZÞ; ð25Þ
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where

f iðZÞ ¼ s2
viðZÞ

k

dM0ðZÞ
dZ

þ
Gi

g
p þ M0ðZÞuiðZÞGi

� �
¼
XN
l¼0

f i
lZ

l: ð26Þ

Here, ui and uiþ1 denote u values obtained at iteration steps i and i þ 1; respectively. Similar
notation is used for v; T ; r; and G: Recall that expressions for ui; vi; Ti; and ri are known at
iteration step i before determining updated values at iteration step i þ 1: The coefficients f i

l
appearing in Eq. (26) are determined by performing an infinite power series expansion of f iðZÞ
(this expansion is possible since f iðZÞ is known when ui; vi; Ti; and ri are known. Furthermore, it
is assumed that series expansions of ui; vi; Ti; and ri are rendered possible at iteration step i).
Next, looking for uiþ1 solutions on the form

uiþ1ðZÞ ¼
XN
l¼0

uiþ1
l Zl ð27Þ

one finds by insertion into Eq. (25) and employing the identity theorem for infinite power series
that the recurrence relation

uiþ1
lþ2 ¼

f i
l þ uiþ1

l

ðlþ 2Þ2
; l ¼ 0; 1; 2; 3;y ð28Þ

must be fulfilled. Firstly, we are interested in finding a solution to Eq. (25). Let us consider the
particular solution up;iþ1ðZÞ for which the two first coefficients in Eq. (27) vanish, i.e., u

p;iþ1
0 ¼

u
p;iþ1
1 ¼ 0: Remaining coefficients: u

p;iþ1
l ; lX2 are now completely determined from Eqs. (28) and

(26), and so up;iþ1ðZÞ is specified. The general solution uiþ1ðZÞ to Eq. (25) can be written as a sum of
the general solution to the homogeneous differential equation:

d2uh;iþ1

dZ2
þ
1

Z
duh;iþ1

dZ
� is2uh;iþ1 ¼ 0 ð29Þ

and the particular solution up;iþ1ðZÞ found above. The general solution uh;iþ1ðZÞ to Eq. (29)
amenable with the condition: limZ-0 juh;iþ1ðZÞjoN becomes

uh;iþ1ðZÞ ¼ AJ0
s ffiffi
i

p Z

 !
ð30Þ

and A is a constant uniquely determined by the boundary condition

uiþ1jZ¼1 ¼ ðuh;iþ1 þ up;iþ1ÞjZ¼1 ¼ 0: ð31Þ

Imposing the latter condition immediately gives the exact solution to Eq. (25) at iteration step
i þ 1:

uiþ1ðZÞ ¼
XN
l¼0

u
p;iþ1
l Zl �

P
N

l¼0 u
p;iþ1
l

J0ðs=
ffiffi
i

p
Þ
J0

s ffiffi
i

p Z

 !
: ð32Þ

Consider next the energy equation: Eq. (8), and rewrite it as

d2Tiþ1

dZ2
þ
1

Z
dTiþ1

dZ
� is2s2Tiþ1 ¼ giðZÞ ð33Þ
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in a similar iterative scheme as for u where now

giðZÞ ¼ s2s2 M0ðZÞGiT iðZÞ �
g� 1
g

½iþ M0ðZÞGi�p
�

þ
g� 1

s2
uiðZÞ
Z

d

dZ
Z
dM0ðZÞ
dZ

� �
þ 2

dM0ðZÞ
dZ

duiðZÞ
dZ

� ��
¼
XN
l¼0

gi
lZ

l: ð34Þ

Again, coefficients gi
l are easily determined from known series expansions of ui; vi; Ti; and ri at

iteration step i: The solution to Eq. (34) at iteration step i þ 1; satisfying the boundary condition:
Tiþ1ðZÞ ¼ 0 at Z ¼ 1; while being finite at the cylinder axis (limZ-0 jTiþ1ðZÞjoN) is determined by
carrying out an analogue procedure as in the case of the axial acoustic velocity uðZÞ: Eventually, it
is found that

Tiþ1ðZÞ ¼
XN
l¼0

T
p;iþ1
l Zl �

P
N

l¼0 T
p;iþ1
l

J0ðss=
ffiffi
i

p
Þ
J0

ssffiffi
i

p Z

 !
; ð35Þ

where

T
p;iþ1
0 ¼ T

p;iþ1
1 ¼ 0;

T
p;iþ1
lþ2 ¼

gi
l þ T

p;iþ1
l

ðlþ 2Þ2
; l ¼ 0; 1; 2; 3;y : ð36Þ

Having determined Tiþ1ðZÞ; density fluctuations riþ1ðZÞ can be easily expressed as

riþ1ðZÞ ¼ p � Tiþ1ðZÞ ¼ p �
XN
l¼0

T
p;iþ1
l Zl þ

P
N

l¼0 T
p;iþ1
l

J0ðss=
ffiffi
i

p
Þ
J0

ssffiffi
i

p Z

 !
¼
XN
l¼0

riþ1
l Zl: ð37Þ

As a last step in closing the iteration loop, the continuity equation will be next employed. Eq. (18)
can be rewritten as

Zkiriþ1ðZÞ þ ZkGiþ1uiþ1ðZÞ þ hiðZÞ ¼ �
d

dZ
ðZviþ1ðZÞÞ; ð38Þ

where

hiðZÞ ¼ M0ðZÞkGiriðZÞZ ¼
XN
l¼0

hi
lZ

l: ð39Þ

Integration of Eq. (38) from Z ¼ 0 to 1 yields an expression for the updated Giþ1:

Giþ1 ¼ �
1

k

P
N

l¼0 hi
l=ðlþ 1ÞP

N

l¼0 uiþ1
l =ðlþ 2Þ

� i

P
N

l¼0 riþ1
l =ðlþ 2ÞP

N

l¼0 uiþ1
l =ðlþ 2Þ

: ð40Þ

As a corollary, integration of Eq. (38) from Z ¼ 0 to Z allows viþ1ðZÞ to be derived:

viþ1ðZÞ ¼ �ki
XN
l¼0

riþ1
l

lþ 2
Ziþ1 � kGiþ1

XN
l¼0

uiþ1
l

lþ 2
Ziþ1 �

XN
l¼0

hi
l

lþ 1
Zl: ð41Þ

This completes the derivation of uiþ1; viþ1; Tiþ1; riþ1; and Giþ1 at iteration step i þ 1 from
known values ui; vi; Ti; ri; and Gi at iteration step i: This prescription is followed until
convergence with respect to i is established.
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Before starting the iteration procedure, values u0ðZÞ; v0ðZÞ; T0ðZÞ; r0ðZÞ; and G0 must be
specified. In this work, values for u0ðZÞ; v0ðZÞ; T0ðZÞ; r0ðZÞ; and G0 are chosen to be the solution
to Eqs. (18)–(21) corresponding to zero-flow conditions (M0ðZÞ ¼ 0) as given by Tijdeman [5], and
rewritten in Eqs. (42)–(46)

u0ðZÞ ¼
i

g
G0p 1�

J0ðs=
ffiffi
i

p
ZÞ

J0ðs=
ffiffi
i

p
Þ

 !
; ð42Þ

T0ðZÞ ¼
g� 1
g

p 1�
J0ðss=

ffiffi
i

p
ZÞ

J0ðss=
ffiffi
i

p
Þ

 !
; ð43Þ

r0ðZÞ ¼
p

g
þ

g� 1
g

p
J0ðss=

ffiffi
i

p
ZÞ

J0ðss=
ffiffi
i

p
Þ
; ð44Þ

v0ðZÞ ¼ �
ikp

2g
ð1þ ðG0Þ2ÞZ�
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ss
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; ð45Þ
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ffi
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ffi
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7775: ð46Þ

Note that the expression for vðZÞ given in Eq. (B13) of Ref. [5] misses a factor of �1 as compared
to the correct Eq. (B3) of Ref. [5]. This error proceeds to the final expression for vðZÞ (Eq. (B20) of
Ref. [5]). However, expressions for uðZÞ; TðZÞ; rðZÞ; and G; also given in Ref. [5], are correct. The
correct expression for vðZÞ at zero flow [v0ðZÞ] is given in Eq. (45) above.
Finally, it should be mentioned that two solutions for G0 exist by taking the square-root of

Eq. (46). The two solutions (differing by a minus factor) correspond to running waves along the
þz direction and �z direction, respectively. In the next section, numerical results based on the
iteration procedure described in the present section, will be discussed for both types of running
waves in the case of a non-vanishing gas flow (M0ðZÞa0).

4. Numerical results and discussions

In this section, it will be assumed that the gas flow velocity wðrÞ can be represented as a linear
combination of a flat profile (which represents well fully developed turbulent flow in a cylinder in
the absence of temperature gradients being the condition in the absence of acoustic excitation in
the present work [17]) and a parabolic profile (corresponding to laminar flow in the absence of
temperature gradients)

wðrÞ ¼ d %w þ ð1� dÞ2 %w 1�
r2

R2

� �
; ð47Þ
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where %w is the mean flow through the cylinder (averaged over the cylinder cross-section), and d
measures the degree of turbulence and varies between 0 (laminar flow) and 1 (fully developed
turbulent flow). In Table 1, parameters used in the calculations are listed.
Data from calculations on phase speeds (defined as the absolute value of 1=G00) and absolute

attenuation per unit distance jG0j are given in Figs. 1(a)–(d) for the case of a flat flow profile (i.e.,
d ¼ 1) and a mean flow Mach number equal to 0.1. Two sets of data are depicted in Figs. 1(a)–(d)

Table 1

Material parameters and characteristic dimensions

Parameter Value Unit

R0 (gas constant) 287 J/kg/K

r0 (steady state gas mass density) 0:35 kg=m3

T0 (steady state gas temperature) 1000 K

g (ratio of heat capacities) 1:4
s (square-root of Prandtl number)

ffiffiffiffiffiffi
0:7

p
m (shear viscosity coefficient) 4:15
 10�5 N s=m2

R (cylinder radius) 0:5
 10�3 m
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Fig. 1. Calculated results for phase speed 1=jG00j and attenuation jG0j as a function of shear wavenumber s for the case

where the flow profile is flat and the mean flow Mach number equals 0.1. (a)–(d) show results for 1=jG00
þj; jG0

þj; 1=jG
00
�j;

and jG0
�j; respectively. The asterisk–solid curve and diamond–dashdotted curve are data obtained using the present

model (Frobenius power series expansion method) and analytical results according to Eq. (48), respectively.
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corresponding to results obtained by use of the Frobenius infinite power series method as
described in the present work (‘‘asterisk–solid curve’’) and analytical results (‘‘diamond–
dashdotted curve’’). The agreement is perfect. For the sake of completeness, the analytical
expression for G; which must be solved iteratively, is given below [11]

1�
G2

ð1� i %wGÞ2
1

g

J2
s

ffiffiffiffiffiffiffiffiffiffi
1�i %wG

p ffi
i

p
 !
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p ffi
i

p
 !þ
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ss
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1�i %wG
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i

p
 !

J0
ss

ffiffiffiffiffiffiffiffiffiffi
1�i %wG

p ffi
i

p
 ! ¼ 0: ð48Þ

Figs. 1(a) and (b) show wave propagation results in the case where acoustic waves propagate
along the direction of flow (a subscript ‘‘þ’’ on G0 and G00 is introduced here for wave propagation
along the direction of flow). Notice, that the phase speed approaches the flow value of 0.1 Mach at
low shear wavenumbers as expected. The agreement between data obtained by use of Eq. (48) and
data calculated by using the Frobenius power series expansion method is perfect. In particular,
Eq. (48) implies that the phase speed approaches 1=ð1� %MÞ ð1=ð1þ %MÞÞ to first order in %M for
acoustic wave propagation along (against) the direction of flow as the shear wavenumber
approaches infinity (s-N). This result can be easily verified by using the fact that
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Fig. 2. Calculated results for phase speed 1=jG00j and attenuation jG0j as a function of shear wavenumber s for the case

where the flow profile is flat and the mean flow Mach number equals 0.3. Curve symbols and line codings are as in

Fig. 1.
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J2ðxÞ=J0ðxÞ-� 1 as x-N in Eq. (48) and solving for G: Values for 1=jG00
7j have been calculated

for s ¼ 10; 15; and 100 in the case where %M ¼ 0:1 by using Eq. (48) and the present Frobenius
power series expansion method. The agreement between the two methods is again perfect and the
following values are obtained: 1=jG00

þj equals 1:001; 1:032; and 1:089 if s equals 10; 15; and 100;
respectively. Similarly, 1=jG00

�j equals 0:811; 0:839; 0:890 if s equals 10; 15; and 100; respectively.
Figs. 1(c) and (d) show wave propagation results for the case where acoustic waves propagate

against the direction of flow (a subscript ‘‘�’’ on G0 and G00 is introduced here for wave
propagation against the direction of flow). Apparently, at high shear wavenumbers, attenuation is
weak. This is expected since the influence of viscosity becomes less pronounced with increasing
shear wavenumbers (refer to Eq. (22)).
In Figs. 2(a)–(d), calculational data are provided for the case of a constant flow profile through

the tube and a mean flow equal to 0.3 Mach, i.e., %w ¼ 0:3 Mach. Curve symbols and line codings
are as in Figs. 1(a)–(d). Good agreement between analytical results (Eq. (48)) and the present
iterative Frobenius power series expansion method is evident. Again, it is found that the phase
speed for wave propagation along the direction of flow approaches 0.3 Mach at low shear
wavenumbers and attenuation decreases with increasing shear wavenumber. Observe, that
attenuation at constant shear wavenumber for wave propagation along the flow jG0

þj decreases
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Fig. 3. Calculated results for phase speed 1=jG00j and attenuation jG0j as a function of shear wavenumber s for the case

where the flow profile is parabolic and the mean flow Mach number equals 0.1. (a)–(d) show results for

1=jG00
þj; jG0

þj; 1=jG
00
�j; and jG0

�j; respectively. The asterisk–solid curve, diamond–dashdotted curve, and plus–dashed
curve are data obtained using the present model (Frobenius power series expansion method), analytical results

according to Eqs. (48) and (49) in Ref. [9], respectively.
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with flow while jG0
�j increases with flow at constant shear wavenumber. The same conclusion was

found in the paper by Dokumaci [11].
Next, consider the case where the mean flow Mach number equals 0.1 and the flow profile is

parabolic (d ¼ 0). In Figs. 3(a)–(d), three curves are shown. Data using the Frobenius series
expansion method (present work) is given by the asterisk–solid curve while the flat flow profile
case is given by the diamond–dashdotted curve (the latter curve is identical to the diamond–
dashdotted curve in Figs. 3(a)–(d)). Also shown in Figs. 3(a)–(d) is data obtained by solving the
cubic polynomial equation (Eq. (49) in Ref. [9]) due to Peat using a variational principle [9] (plus–
dashed curve). It is evident that the three models agree quite well in terms of phase speed and
attenuation data for wave propagation along the direction of flow. A slight discrepancy is
observed between the model of Peat [9] on one side and the present exact model based on the
power series expansion method as well as the constant flow profile results. This is to be expected as
the assumption that axial acoustic velocities are well represented by a parabolic function in Z do
not perfectly hold at the higher shear wavenumbers (this limitation was already pointed out by
Peat in Ref. [9]). The very good agreement between the approximative model of Dokumaci (flat
flow profile [11]) and the present work suggests the use of Dokumaci’s approximative solution [11]
as a starting guess for the iterative procedure instead of the values at zero-flow conditions (present
work). The discrepancy between results based on Peat’s model and the present work is mostly
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Fig. 4. Calculated results for phase speed 1=jG00j and attenuation jG0j as a function of shear wavenumber s for the case

where the flow profile is parabolic and the mean flow Mach number equals 0.3. (a)–(d) show results for

1=jG00
þj; jG0

þj; 1=jG
00
�j; and jG0

�j; respectively. Curve symbols and line codings are as in Fig. 3.
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pronounced in the case of wave propagation against the flow direction at high shear
wavenumbers. It should be pointed out that Peat and Kirby recently carried out a ‘‘purely’’
numerical analysis including effects due to radial velocity terms as well as a background
temperature gradient [13].
In Figs. 4(a)–(d), data are given for the parabolic flow profile case and a mean flow equal to 0.3

Mach. Same line codings as in Figs. 3(a)–(d) are used. It is evident that results based on a the
cubic polynomial equation for G [9] deviate somewhat at higher shear wavenumbers while phase
speed and attenuation data based on the assumption of a constant flow profile deviate only
slightly from those corresponding to the exact Frobenius method (present work).
Next in Figs. 5(a)–(d), results based on the exact Frobenius method (asterisk–solid curve) are

compared to those using a similar Frobenius series expansion method except that radial velocity
terms are set to zero in the latter case, i.e., vðZÞ ¼ 0 (diamond–dashdotted curve). For reference,
data using the model in Ref. [9] is plotted again in Figs. 5(a)–(d) (plus–dashed curve). It was
postulated by Peat and used by Peat [9] and Astley and Cummings [10] that due to a much smaller
cylinder radius in comparison with the acoustic wavelength, one could rationally neglect radial
velocity terms altogether. Figs. 5(a)–(d) reveal that this is indeed a reasonable postulate. In the

0 2 4 6 8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 shear wavenumber s

ph
as

e 
sp

ee
d 

1/
| 

+´´
|

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

 shear wavenumber s

at
te

nu
at

io
n 

| 
+´
|

0 2 4 6 8
0.2

0.3

0.4

0.5

0.6

0.7

 shear wavenumber s

ph
as

e 
sp

ee
d 

1/
|Γ

−´´
|

0 2 4 6 8
0

20

40

60

80

100

 shear wavenumber s

at
te

nu
at

io
n 

|Γ
−´
|

(a) (b)

(d)(c)

Fig. 5. Calculated results for phase speed 1=jG00j and attenuation jG0j as a function of shear wavenumber s for the case

where the flow profile is parabolic and the mean flow Mach number equals 0.3. (a)–(d) show results for

1=jG00
þj; jG0

þj; 1=jG
00
�j; and jG0

�j; respectively. The asterisk–solid curve and diamond–dashdotted curve are calculated
using the exact Frobenius series expansion method and the Frobenius series expansion method where in the latter case

all radial velocity terms are set to zero: vðZÞ ¼ 0: Also shown is the plus–dashed curve calculated by using of Eq. (49) in
Ref. [9].
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paper by Astley and Cummings [10], a finite-element model was proposed so as to describe sound
propagation in flowing gases confined by cylindrical/rectangular walls. In this work [10], higher
order modes were included in the analysis but the assumption that radial velocity terms can be
neglected was still be made. The present work clarifies, however, that deviations induced by
making this postulate (read: setting radial velocity terms to zero) are greater than deviations
caused by approximating the parabolic flow profile by a constant flow profile.
In Figs. 6(a)–(d), data are shown for various flow profiles (d values) at a constant mean flow

equal to 0.3 Mach. The four curves plus–dashed, square–dotted, asterisk–solid, and diamond–
dashdotted correspond to d ¼ 1; 0:9; 0:5; and 0; respectively. It is evident (as expected from the
data already presented in Figs. 1–5) that only small variations in phase speed data as well as
attenuation data result from varying the profile parameter d between 0 and 1.

5. Conclusions

An iterative analytical model based on the dynamic equations governing acoustics in flowing
(ideal) gases confined by cylindrical walls is described using the exact Frobenius series expansion
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Fig. 6. Calculated results for phase speed 1=jG00j and attenuation jG0j as a function of shear wavenumber s for the case

where the mean flow Mach number equals 0.3. (a)–(d) show results for 1=jG00
þj; jG0

þj; 1=jG
00
�j; and jG0

�j; respectively. The
four curves plus–dashed, square–dotted, asterisk–solid, and diamond–dashdotted correspond to d ¼ 1; 0:9; 0:5; and 0;
respectively.
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method for the (rather) general case where the flow velocity can be represented by an infinite
power series expansion in the radial co-ordinate. It is found that approximating a parabolic flow
profile by a constant (flat) profile is a good approximation at low as well as at higher shear
wavenumbers (calculations were done up to sp8). Specifically, in the case where the gas flow
velocity wðrÞ is assumed to be a linear combination of a flat flow profile and a parabolic flow
profile, it is also concluded that the error in neglecting radial velocity terms in the analysis is larger
than the error due to approximating the flow profile wðrÞ by its mean value.
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